首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1083篇
  免费   38篇
  国内免费   7篇
化学   791篇
晶体学   12篇
力学   25篇
数学   62篇
物理学   238篇
  2024年   5篇
  2023年   14篇
  2022年   21篇
  2021年   60篇
  2020年   33篇
  2019年   38篇
  2018年   52篇
  2017年   31篇
  2016年   58篇
  2015年   33篇
  2014年   43篇
  2013年   77篇
  2012年   79篇
  2011年   82篇
  2010年   55篇
  2009年   47篇
  2008年   42篇
  2007年   39篇
  2006年   38篇
  2005年   42篇
  2004年   33篇
  2003年   27篇
  2002年   34篇
  2001年   6篇
  2000年   16篇
  1999年   3篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   12篇
  1991年   5篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   11篇
  1977年   3篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1972年   7篇
  1971年   5篇
  1967年   2篇
排序方式: 共有1128条查询结果,搜索用时 390 毫秒
41.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
42.
The optical characteristics of biological tissues sampled from the anterior abdominal wall of laboratory rats are for the first time experimentally studied in a wide wavelength range (350-2500 nm). The experiments have been performed in vitro using a LAMBDA 950 (PerkinElmer, United States) spectrophotometer. Inverse Monte Carlo simulation is used to restore the spectral dependences for scattering and absorption coefficients, as well as the scattering anisotropy factor for biological tissue based on the recorded spectra of diffuse reflection and total and collimated transmissions.  相似文献   
43.
Central to humanitarian logistics is the minimization of distress among impacted populations in the aftermath of a disaster. In this paper, we characterize two levels of distress, termed criticality and destitution, with respect to the delay provision of relief items. Delay in provision of a relief item will lead to destitution for a tolerable number of days, beyond which it will lead to criticality. We develop a mixed-integer goal program that quantifies these two metrics with respect to the number of days without provision of each of a set of relief items. The model determines the allocation of resources and the distribution of available relief items in a manner that minimizes criticality and destitution in affected population segments. The use of the model is demonstrated for the aftermath of a catastrophic earthquake in Istanbul, expected to occur by 2030.  相似文献   
44.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
45.
Electron diffraction provides useful information about the internal composition of materials and has been in the use of material scientists for more than fifty years. In order to extract useful information from offline diffraction images, they are manually analyzed by using some photometric technique. Manual analysis is however a cumbersome, laborious and difficult task. To reduce the labors of material scientists one can employ image processing techniques to perform automated analysis, due to the well established popularity and clear evidence of widely used image processing techniques. In this work an image processing technique is being proposed for the extraction of 2D unit cell information from diffraction images on one hand and finding the 2D point group contained by the lattices on the other. The technique employs a morphological shrinking operation to find the center of each spot in the underlying preprocessed diffraction image. This is followed by the extraction of eight points with reference to the spot produced by the transmitted electron beam. The resultant nine points, i.e. the extracted eight plus the reference spot generated by the transmitted electron beam, are then subjected to symmetry operations, rotation symmetry and mirror symmetry, in polar coordinate system, to classify the point group of the lattice produced by the electron diffraction. One of the difficult task, even in manual analysis, is to ascertain the exact spot where the transmitted electron beam hit the sample at the time of realization of the image. This has been accurately and intuitively done by employing the notion that the transmitted spot must have greater number of pixels, with the highest gray value, among the diffracted spots. The proposed strategy has been applied to a sample set of various images and the results shows that the technique is efficient in determining the unit cell in 2D and classify the point group with good accuracy.  相似文献   
46.
A modified sequential extraction method was developed to characterize arsenic (As) associated with different solid constituents in surficial deposits (sediments), which are unconsolidated glacial deposits overlying bedrock. Current sequential extraction methods produce a significant amount of unresolved As in the residual fraction, but our proposed scheme can fractionate >90% of the As present in sediments. Sediment samples containing different As concentrations (3–35 μg g−1) were used to assess the developed method. The pooled amount of As recovered from all the fractions using the developed method was similar (83–122%) to the total As extracted by acid digestion. The concentrations of As in different fractions using the developed scheme were comparable (89–106%) to the As fractions obtained by other existing methods. The developed method was also evaluated for the sequential extraction of other metals such as copper (Cu), cobalt (Co), chromium (Cr) and strontium (Sr) in the sediment samples. The pooled concentrations of these four individual metals from all the fractions were similar (96–104%) to their total concentrations extracted by acid digestion. During method development, we used extractants that did not contain chloride to eliminate formation of polyatomic ions of argon chloride (40Ar35Cl) that interfered with 75As when analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The results suggest that the developed method can reliably be employed for complete As and other metals’ fractionation in sediments using ICP-MS.  相似文献   
47.
Biotransformation is the structural modification of compounds using enzymes as the catalysts and it plays a key role in the synthesis of pharmaceutically important compounds. 10β,17β‐Dihydroxy‐17α‐methylestr‐4‐en‐3‐one dihydrate, C19H28O3·2H2O, was obtained from the fungal biotransformation of methyloestrenolone. The structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results from the two refinements have been compared. The ELMAM2 refinement has been found to be superior in terms of the refinement statistics. It has been shown that certain electron‐density‐derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution.  相似文献   
48.
We introduce a recurrence tracing microscope based on the reflection of cold atoms from two magnetic mirrors placed in parallel. A cantilever is attached perpendicularly to one of the two mirrors at the lower end that probes surface structures. The quantum dynamics in the system provides the matter waves to store information on the height and spacing between the nanostructures. We use the recurrence tracking microscope in static and dynamic modes to study arbitrary and periodic nanostructures.  相似文献   
49.
50.
Compounds belonging to the stilbene family have gained remarkable significance in pharmaceutical as well as material chemistry. The current review covers the various synthetic approaches for the syntheses of stilbene scaffold and related structures over last 30 years. In addition, this review also highlights the role of stilbene intermediates used in the synthesis of important molecules with diverse applications in the field of pharmaceutics and material science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号